
Number, Writing, and Computation

Alex Sanchez

November 2023

1 Number

“Just two more feet to the left.” “I need forty cc’s of Pancuronium, stat!” “The consumer price index rose
by half a percent during January.” “That’s a long pass from the Broncos thirty yard line to the Dolphins
twenty yard line.” “Three cheers for Robin Hood!”

Most familiarly, people use numbers to facilitate precise communication. In particular, numbers refine
and, indeed, enable the notion of measurement.

1.1 Measurement

Different kinds of objects want for different kinds of measurements–and different kinds of measurements want
for different kinds of numbers! For instance1,

• If you want to count the number of individual M&M’s candy pieces in a bowl, then (nonnegative)
natural numbers, like 0, 1, 2, 3, . . . etc., are the appropriate tools. Sometimes 0 is considered as a natural
number and sometimes it is not; there is no agreement on this convention. So, I’ll generally specify
“(positive) natural numbers” to mean that 0 is not considered a natural number or “(nonnegative)
natural numbers” to mean that 0 is considered a natural number.

• If you want to measure a person’s height, then you might report their approximate height as a natural
number of inches, like 67 inches2. However, if you wanted to measure the diameter of an individual
M&M’s candy piece, then rounding to the nearest inch would probably be “about 0 inches”, which
doesn’t tell you much! The problem, of course, is that inches are too large, or imperfect, to measure
individual M&M’s candy pieces. Instead, you might want to use millimeters, which are much smaller.
Of course, “about 11 millimeters” is a much more useful measurement!

1Don’t worry about understanding all the details for the following examples; they are only meant to make clear the idea
that different number systems are designed to handle different kinds of measurements.

2Which is, equivalently (and more commonly), reported as 5’7”.

1



(Generated with Midjourney;
prompt by Tucker Forbes3)

For those people who lack a prior physical intuition for the length of a millimeter but are familiar with
inches, it would be useful to relate inches to millimeters. Indeed, we can say that 127 millimeters is
the same4 length as 5 inches. Using the language of nonnegative rational numbers5, we can say that
a millimeter is equal to 5

127 ≈ 0.039 inches. Indeed, the use of rational numbers allows us to make
measurements at arbitrary precision.

• The natural numbers are also insufficient to measure the position of character in an old-school 2D
platformer, like the Mario surface, even though the positions are all discrete6, and so there is no issue
with precision like we had with measuring physical lengths. Instead, the issue is that the natural
numbers only extend infinitely in one direction–but our character can walk off in two directions: left
and right! We remedy this by introducing “negative” numbers, which are nothing more than another
copy of the naturals (without zero) going in the other direction. The resulting numbers are called the
integers. By convention, the positive integers are written on the right and the negative numbers go off
to the left, like . . . ,−2,−1, 0, 1, 2, . . . .

• If, instead of Mario, we want to measure the position of a character in Minecraft, we need to use
(positive and negative) rational numbers because of the precision concerns from before (since players
can move continuously in Minecraft, enabling parkour maneuvers).

3Check out his YouTube channel, @AutodidactOfficial!
4It turns out that this actually the definition of an inch, so this ratio is exact.
5These are more commonly known as “fractions”.
6In these games, characters reside in “spaces”, like (abstract) chess pieces in squares, at any given time, rather than sliding

freely and continuously, like (physical) chess pieces on a flat board or a hockey puck on ice.

2

https://www.youtube.com/@AutodidactOfficial


However, Minecraft is also 3D, so we need to use 3 numbers, called (vector) coordinates, to describe
the position–one number for each direction: east/west, up/down, and north/south.

• There are even extremely intricate number systems for recording things as abstract as the configuration
state of a Rubik’s cube using the idea of symmetry groups. Of course, the details of such a construction
are beyond the scope of this discussion. However, it should be noted that mathematicians have dreamed
up numbers for all kinds of occasions, including ones you might care about–but that you probably won’t
see in school.

Exercise: write down some things you might measure and what kind of qualities you’d want for
number systems to represent those measurements.

1.2 Natural Numbers

But let’s not get ahead of ourselves. We start by considering only the (positive) natural numbers, 1, 2, 3, . . .
and some of their basic properties. There is only one basic idea we need at this stage: The natural
numbers count the number of 1’s which they’re equal to. To illustrate,

• 1︸︷︷︸
1

= 1 This one7 is almost too simple...but the pattern will become clear in the following cases.

• 1 + 1︸ ︷︷ ︸
2

= 2

• 1 + 1 + 1︸ ︷︷ ︸
3

= 3

• 1 + 1 + 1 + 1︸ ︷︷ ︸
4

= 4 This bold number (under the brace) is just counting the number of 1’s in the sum

on the left-hand-side of the equation.

• 1 + 1 + 1 + 1 + 1︸ ︷︷ ︸
5

= 5 This bold number is numerical value of the sum.

...

• 1 + 1 + 1 + 1 + 1 + 1 · · ·+ 1︸ ︷︷ ︸
100

= 100 In particular, no matter how many ones there are, the two bold

numbers will always be the same (here, we see the case for 100); that is, the number of 1’s a sum of
this kind will always equal that sum’s value.

7Ba dum tss

3



...

In principle, this idea of successive enumeration is really all there is to the natural numbers. However, as
you’re probably aware, it’s not that easy in practice. A great bit of complexity occurs in at least two ways:

1. There is complexity in how we represent/compute with numbers.

2. There are deep mathematical complexities in the structure of the ways in which numbers multiply
together.

For now, we focus on the former.

2 Writing

The original purpose of writing, in the first place, was to communicate with people who are not present
in space or time. The concept of the (phonetic) alphabet allowed people to reconstruct some version of
spoken language directly from the written language; rather than having to memorize independent glyphs for
each word/idea in a language, the letters of an alphabet allow the reader to “compute” the spoken word.
Since languages have many more words than sounds, this reduces the memory demands on the reader. The
situation is more extreme with numbers: there are infinitely many numbers, so memorizing a unique glyph
for each number is doomed to failure. Throughout the ages, the inventors of notational systems for numbers
have understood this problem. We will look at a few different notational systems.

2.1 Tally Marks

2.1.1 The Basics

To my knowledge, all civilizations that developed a numeral system at all developed a system of tally marks.
Tally marks use the idea about natural numbers that we saw before, that natural numbers count 1’s. Here,
we present a tally system based on the “∗” symbol:

• “one” = ∗

• “two” = ∗∗

• “three” = ∗ ∗ ∗
etc.

We quickly see the problem with such a näıve tally system. The number “forty-two” looks like

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

in our system, as it stands. That is an unreadable and unwieldy numeral for a fairly modest number. Let
alone trying to write down (or read!) the number “one thousand” (or worse)...

Exercise: write down the following numbers in the tally system:

• “four”

• “twelve”

• “twenty”

4



2.1.2 New Symbols

To accommodate large numbers, there are multiple options that we can use. The first one we’ll explore is
memorizing new symbols to represent collections of old symbols. So, we use the following new tally system:

• As before, “one” = ∗, “two” = ∗∗, etc.

• Now, we write “ten” = △ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗.
For instance, “eleven” = △∗, “twenty-one” = △△∗, and “twelve” = △ ∗ ∗.

This fixes the problem of making “forty-two” readable: indeed,△△△△∗∗ is pretty manageable. However,
“one thousand” remains an issue. No problem, we can just keep adding symbols:

write “one hundred” = □ = △△△△△△△△△△.

Now, even “one thousand” is semi-manageable to read/write: □□□□□□□□□□.
This system of numbers which we have constructed is more or less the same idea as that of Roman

numerals, the system of numbers used by the Roman Empire–except8 that the Romans added even more
symbols to their numeral system...

Exercise: write down the following numbers in the new tally system:

• “four”

• “fourty-two”

• “one hundred eleven”

2.1.3 Exponential Scaling

However, we can see that we’re fighting a losing battle by adding more and more symbols: since numbers
get infinitely big, we’re either going to have to add an infinite number of symbols to our numeral system
or we’re going to be unable to deal with very large numbers, like 1000000, etc. To that end, we explore a
different idea than adding a list of new symbols altogether: we put boxes around symbols to indicate that
those symbols represent 10 times their original value. This will be easier to understand with some examples:

• ∗ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ = “ten” = △.

• ∗ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ = “one hundred” = □ = △△△△△△△△△△.

• ∗ = “one thousand”, etc.

• Numbers like “one thousand two hundred thirty-four” are written as ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗.

• We can (barely) handle really, really big numbers, like “one million” = ∗ .

8The Roman numeral system also has a way of subtracting depending on order, but I consider that a minor detail for the
purposes of this development.

5



This system is very powerful. In fact, for most pedagogical purposes (especially before multiplication),
it’s conceptually superior to the standard way of writing numbers. However, it’s slightly less economical
(since you need to do a lot more physical writing) and less practical (since writing more than 3 nested
boxes is a pain). Then again, it’s perfectly good for most modestly sized numbers and it more transparently
demonstrates many of the true properties natural numbers (especially with respect to addition).

Exercise: write down the following numbers in the new new tally system:

• “four”

• “two thousand one hundred eleven”

• “sixty thousand”

2.1.4 Best of Both Worlds: Final Tally System

Now, it’s kind of annoying to write ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ for “nine”. So, instead of symbols like △ and □, which

are now superseded by ∗ and ∗ , respectively, we (re)introduce the familiar Arabic Numerals:

• 1 = ∗ = “one”

• 2 = ∗∗ = “two”
...

• 9 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ = “nine”

Now, note that this system is still a tally system, not a positional system. That means that, in this tally
system, the numeral 11 does not represent the number “eleven”, but actually represents the number “two”;
since ∗ = 1, we have that ∗∗ = 11, and so

11 = ∗∗ = 2 = “two”.

If, instead, we really want to write the number “eleven”, then we should probably use the boxes:

1 1 = ∗ ∗ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ = “eleven”

This system is getting pretty close to the standard Hindu-Arabic numeral system. Indeed, we can write

numbers like “one thousand two hundred thirty-four” as 1 2 3 4.

Exercise: write down the following numbers in the new new new tally system:

• “four”

• “fifty-five thousand two hundred sixty-eight”

• “nine hundred eighty-seven thousand six hundred fifty-four”

2.2 Positional Systems

At this point, the main difference between our Final Tally system, or FTS for short, and the standard,
positional Hindu-Arabic Numeral System, or HANS for short, is that our FTS admits multiple valid
numerals for each number, while the HANS only admits one valid numeral for each number. For instance,

6



• In HANS, the numeral 1234 is the only way to write the number “one thousand two hundred thirty-
four”.

• However, in FTS, we can write this number with any of the following numerals:

1 2 3 4 = 4 3 2 1 = 1 3 2 1 1 1 1 = 43 8 7 5 58 2 9 76 99.

Obviously, recognizing these different numerals as representing the same number is practically impos-
sible at worst and extremely laborious at best. That is one practical reason why HANS has dominated.
(However, there are advantages to having some flexibility in the way we write our numerals, also, which
we will see shortly...)

It turns out that it’s always possible to write any natural number with one glyph (digit 1-9) per box,

with at most one box of each size. Choosing this convention as the standard allows us to pick 1 2 3 4

as the official “standard form” in FTS–and this is what HANS does, too.
At this point, there is only one thing preventing us from simply omitting the boxes from the standard

form of FTS and obtaining HANS–consider the numbers and their standard form FTS numerals:

• “eleven” = 1 1. If we were to simply omit the boxes, then we obtain the correct HANS numeral, 11.
Nice.

• “one hundred one” = 1 1. However, if we were to simply omit the boxes here, then would not

obtain the correct HANS numeral; instead, we would also obtain 11.

• “one hundred ten” = 1 1 . Similarly, simply omitting the boxes here still yields 11, the wrong

HANS numeral.

• “one thousand one” = 1 1. Likewise...

...

The thing we are missing is the positional placeholder. That is, we should allow empty boxes. That is,

instead of writing, for example 1 1 for “one hundred one”, we should instead write 1 1, with an empty

box. The symbol we use in HANS for this placeholder is 0. Thus, we have the following corrections to the
above numerals:

• “eleven” = 1 1. If we were to simply omit the boxes, then we obtain the correct HANS numeral, 11.
Nice.

• “one hundred one” = 1 1. Now, when we omit the boxes, we get 101, the correct HANS numeral

for “one hundred one”, as desired!

• “one hundred ten” = 1 1 . In this case, there is no empty box at the end, so we must add the

placeholder for the missing unboxed glyph at the end of this FTS numeral to obtain the correct HANS
numeral, 110.

• “one thousand one” = 1 1. Likewise...

...

7



Therefore, we can understand positional number systems, including HANS, as a kind of
standardized tally system (in this case, FTS), together with positional placeholders. HANS
is more useful for communication with others since there is one and only one numeral for each number,
whereas there are multiple possible numerals for each number in FTS...

3 Computation

However, as any writer will tell you: When we write, we are in dialogue with ourself, and writing facilitates
that dialogue. Analogously, good mathematical notation facilitates computations. And FTS is more useful
than HANS in this respect because we have flexibility to write numerals in a convenient form. To this end,
we study the addition of numbers utilizing our FTS system.

3.1 Addition in a Tally System

What is ∗ plus ∗? It’s just ∗∗, of course! The main advantage of a tally system is that it makes addition
trivial. What is ∗∗ plus ∗∗? ∗ ∗ ∗∗. Easy!

What is ∗ ∗ plus ∗ ∗? Well, it’s ∗ ∗ ∗ ∗. That’s technically correct. However, we want to put that in
standardized form. So, we rewrite it!

∗ ∗+ ∗ ∗ = ∗ ∗ ∗ ∗ = ∗ ∗ ∗ ∗ = ∗∗ ∗ ∗.

Using the correspondence between FTS and HANS, we can read off a basic arithmetical fact: “eleven
plus eleven” is 1 1 + 1 1 = ∗ ∗ + ∗ ∗ = ∗∗ ∗ ∗ = 2 2 is “twenty-two”; in particular, writing the same
numerical fact in HANS, we have that 11 + 11 = 22.

This tally system has a number of rewriting rules, which are fairly intuitive; I haven’t explicitly mentioned
them up until this point, but I will now.

3.2 Rewriting Numbers in FTS

We have already seen instances representing all of the essentially different kinds of rewrites we need to
consider for FTS, so this section is merely an aside to review and elucidate the underlying general principles.

1. We can use numerals representing the same number interchangeably; this is the most fundamental
rewrite rule. Let’s see some examples to see how to apply it:

• We have seen that, in FTS, 55 = 1 . So, in particular, we have that 1 1 = 551, and 2 1 4 =

2 554, etc.

• We have seen that, in FTS, 11 = 2. So, in particular, we have that 1 2 = 1 11 and 2 1 4 =

11 1 4, etc.

• We can use multiple instances of this rewrite rule to note that 1 2 = 5511 and 2 1 4 =

11 554.

• For that matter, we have that 55 = 1 and 11 = 2 , etc.

2. The order of tallies doesn’t matter, since it ultimately just boils down to a long list of ∗ symbols. In
particular, you can write the individual glyphs in a numeral in any order. Let’s see some examples to
see how to apply this rule:

8



• In FTS, we have that 1 1 = 1 1 . Indeed, both numerals represent the number “eleven”.

• In FTS, we have that 2 1 4 = 2 4 1 = 1 2 4 = 1 4 2 1 = 4 2 1 = 4 1 2 . Indeed,

all of these numerals represent the number “two hundred fourteen”.

3. Applying a box to a numeral is the same as apply a box to each tally in the numeral individually. For
instance, ∗ ∗ ∗ = ∗ ∗ ∗ . Let’s see some more examples to see how to apply this rule in FTS:

• In FTS, we have that 2 = 11 = 1 1 .

• Likewise, 5 5 = 55 = 1 .

• And also, 1 1 = 1 1 = 11 = 2 .

Exercise: identify the numbers represented by each of the above FTS numerals.

3.2.1 A Glimpse into the Future

The typical approach for stating rules that apply in various situations, such as rewrite rules, is to use variables.
The concept of a variable, when it is first being learned, is often presented as somewhat mysterious or vague,
but that need not be the case; we will treat variables in detail later. For now, though, I will say something
about their utility.

Whereas before we stated our rewrite rules by analogy/example, variables allow us to capture many–
potentially infinitely many–cases in a single formula. In this way, we can be more precise about exactly which
situations a given rule applies. An approach based on variables has all the specificity of forming an explicit list
of situations, like “ 1 2 = 2 1 , 3 4 = 4 3 ”, while covering an arbitrarily large set of possibilities–something
which would be infeasible without variables.

That’s enough of a digression. Back to addition...

3.3 An Algorithm for Addition

Our strategy for adding two numbers represented by HANS numerals is:

1. Write each number, represented as HANS numerals, as FTS numerals.

2. Add the numbers in FTS by sticking the two numerals together, a process called concatenation.

3. Rewrite the sum as a FTS numeral in standard form.

4. Convert the resulting standardized FTS numeral into a HANS numeral.

We have already seen how to do all these steps except for the rewriting step; we will explore that step now.

9



3.3.1 An Instructive Example

To that end, we consider an example, “twelve thousand three hundred forty-five” plus “six thousand seven
hundred eighty-nine” is

1 2 3 4 5 6 7 8 9 = 1 2 6 3 7 4 8 59 = 1 26 37 48 59

= ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= 1 9 1 3 4

is “nineteen thousand one hundred thirty-four”. Or, in HANS, 12345 + 6789 = 19134. The procedure used
in this example is pretty straight-forward:

1. Rearrange to bring together boxes of the same size.

2. Add up numerals within boxes of the same size, starting with the smallest:

(a) Revert to “∗” symbols.

(b) Count.

(c) Express totals as numerals using digits: 1, 2, 3, 4, 5, 6, 7, 8, 9.

3. Collect the overflow into the next-highest box.

4. Repeat for boxes of all all sizes.

In this example, I didn’t assume any arithmetical facts whatsoever–not even the standard addition tables
in single digits. Instead, I converted numerals back into “∗” symbols and simply counted. Indeed, if you
can count to “ten” (for instance, on your fingers), then you don’t really need to memorize addition tables.9

However, many people have gone through the trouble of memorizing how to add single digit numbers quickly.
So, if you have that information, then you can skip some counting when you add numbers.

I will repeat the same computation, but this time instead of using “∗” symbols, I will only use the
1, 2, 3, 4, 5, 6, 7, 8, 9 digits:

1 2 3 4 5 6 7 8 9 = 1 2 6 3 7 4 8 59 = 1 26 37 48 59

= 1 8 1 1 2 1 4 = 1 81 1 21 4 = 1 9 1 3 4

Indeed, this is just the standard garden-variety addition algorithm. You will notice that it requires being
able to add single digit numbers. For instance, you need to know that 4 + 8 = 1 2 (or 12 in HANS). Of
course, the benefit is that you get to do step (2) of the above algorithm in one step instead of three sub-steps.

9This, perhaps, runs contrary to popular belief. Oh well.

10



3.3.2 Getting Comfortable: Comparison to the Familiar Algorithm

In some sense elaborated above, the algorithm we discovered is actually essentially identical to the standard
addition algorithm except for cosmetic changes (where/how to write numbers). However, the conceptual
basis is different since we are relying upon a chain of understanding down to the level of tally systems in
order to motivate our steps–whereas, the standard addition algorithm is presented purely as a symbolic
manipulation (since its purpose is to efficiently compute correct answers, rather than to explain what’s
happening). Moreover, cosmetic changes–especially changes as profound as the ones we’ve made here–can
be disorienting; I will do a small example with a side-by-side comparison.

Standard addition algorithm:

1
6 6

+ 6 6
2

=⇒

1 1
6 6

+ 6 6
1 3 2

The purpose of this algorithm
is to efficiently compute the sum.

Digits-only tally-algorithm:

6 6 + 6 6 = 6 6 6 6

= 6 6 66

= 66 66

= 66 1 2

= 661 2

= 1 3 2

= 1 3 2

The purpose of this algorithm
is to be a bridge between the other
two algorithms.

“∗” symbol tally-algorithm:

6 6 + 6 6 = 6 6 6 6

= 6 6 66

= 66 66

= 66 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= 66 ∗ ∗ ∗

= 66 1 2

= 661 2

= ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2

= ∗ ∗ ∗∗ 2

= 1 3 2

= 1 3 2

The purpose of this algorithm
is to make clear what’s happening
to the numbers and how our writ-
ten mathematical notation reflects
that numerical reality.

When you compute sums, by all means, use the standard algorithm. However, understanding the rea-
soning behind the “∗” symbol tally-algorithm is helpful on a conceptual level, get a feeling for what natural
numbers are and how they work.

Compute the following sums (which are all written in HANS):

• 1 + 2

• 10 + 20

• 10 + 2

• 987 + 76

• 1234 + 567800

11


	Number
	Measurement
	Natural Numbers

	Writing
	Tally Marks
	The Basics
	New Symbols
	Exponential Scaling
	Best of Both Worlds: Final Tally System

	Positional Systems

	Computation
	Addition in a Tally System
	Rewriting Numbers in FTS
	A Glimpse into the Future

	An Algorithm for Addition
	An Instructive Example
	Getting Comfortable: Comparison to the Familiar Algorithm



